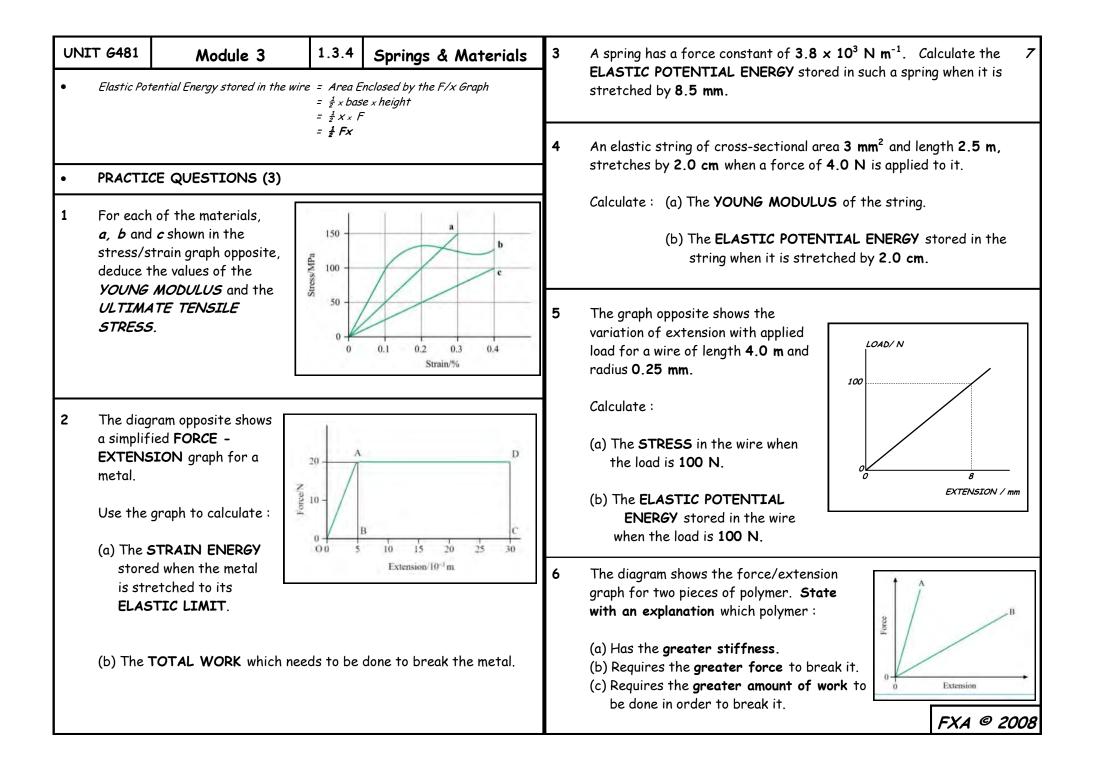

UNIT 6481	Module 3	1.3.4	Springs & Materials	• TENSILE & COMPRESSIVE FORCES 1		
• [] a • [] (•] (Lates should be able to Describe how deformation is and can be tensile or compr Describe the behaviour of s extension, elastic limit, Ho (i.e. force per unit extension Select and apply the equation constant of the spring or the	ressive . springs ar ooke's La n or comp on F = 1	w and the force constant pression).	 A pair of forces is needed to change the size and shape of a spring or wire. <u>COMPRESSIVE</u> forces are applied if the spring is being shortened or compressed. <u>TENSILE</u> forces are applied if the spring is being stretched or extended. 		
	Determine the area under (for compression) graph to p			• STIFFNESS OF A SPRING		
E	Select and use the equation E = ‡ Fx and E = ‡ kx ².			A helical spring hangs from a rod clamped in a retort stand as shown opposite.		
	Define and use the terms <mark>s</mark> Il <mark>timate tensile strength (</mark>		•	spring		
	Describe an experiment to a netal in the form of a wire.		e the Young modulus of a	Using a mass hanger and 100 g slotted masses a force is applied to the spring and this is gradually increased.		
	Define the terms elastic de of a material.	eformatic	on and plastic deformation			
	Describe the shapes of the ductile, brittle and polyme r		••••	The <u>EXTENSION (x)</u> (i.e. the increase in length of the spring) produced for each value of the <u>APPLIED FORCE (F)</u> is recorded in the results table below.		
				FXA © 2008		



UNIT 6481	Module 3	1.3.4	Springs & Materials	• ELA	ASTIC AND PLASTIC DEFORM	IATION 4
DETERM Two long v length and support. C compariso so as to av Exp ter	VIRATION OF THE YOU vires (P & Q) of the same mater diameter are hung from a comm is the wire under test and P is n wire which is used as a referen- void errors due to : pansion occurring as a result of nperature change. gging of the support.	ING MO		•	ELASTIC behaviour is shown by a wire of length when the applied deforming force Independent of the applied deforming force All materials show ELAST When a sample (e.g. spring LIMIT, it does not regain removed (i.e. it suffers per pendent) Image: Comparison of the applied deforming force PLASTIC behaviour is shown by some means	or spring if it returns to its original e (load) is removed. <u>IC</u> behaviour up to the <u>ELASTC LIMIT</u> . g, wire) is loaded beyond its <u>ELASTIC</u> its original dimensions when the load is ermanent deformation).
 The <u>CROS</u> determine gauge to n 	INAL LENGTH (L) of wire Q is using a metal tape measure. S-SECTIONAL AREA (A) is d by using a micrometer screw measure the diameter of Q at ints along the length of the wire		fixed weight		elastic limit. The material is permanentl	ly deformed (or strained) when the load is
 The <u>EXTE</u> loaded, is 	diameter and hence the mean is calculated. Then $\mathbf{A} = \prod \mathbf{R}^2$. NSION (x) of wire Q when it is accurately measured by the rangement between P and Q .			the . back is ze	re is <u>ELASTIC</u> deformation - When stress is removed, the sample goes k to its original dimensions (i.e. there ero strain). <mark>B onwards</mark>	STRESS
measured	vire Q is then incrementally load and noted. The results are used <u>ON (x)</u> whose gradient = F/x.	l to plot a g	e corresponding extensions are araph of <mark>FORCE (LOAD) (F</mark>) versus	the . perm	re is <u>PLASTIC</u> deformation - When stress is removed, the sample is left nanently deformed (i.e. there is a dual strain = AD).	A D STRAIN
Young n	nodulus, E = <u>stress</u> = <u>F/A</u> Strain ×/L	= <u>FL</u> = <u>x A</u>	gradient of F/x graph × <u>L</u> A			

UNIT 6481	Module 3	1.3.4	Springs & Materials	3	Part of a force against extension 8
• HOMEW	ORK QUESTIONS				graph for a spring is shown opposite. The spring obeys <i>HOOKE'S LAW</i> for forces up to <i>5.0 N.</i>
(b) Describ	ne <i>STRESS.</i> (ii) Define <i>ST</i> e an experiment to determine t a wire. Your description should	the YOUNG	G MODULUS of a metal in the		(a) Calculate the EXTENSION produced by a force of 5.0 N.
• • •	A labelled diagram of the a The measurements to be to An explanation of how the the measurements. An explanation of how the to determine the Young mo	ipparatus. iken. equipment i measuremei dulus.			fixed support 5.0N
(b) The wir was 0, , The ex (i) ((ii) (c) A diffe length,	75 m . Fixing one end and apply tension produced is 4.2 mm . Calculate the STRAIN produced The Young modulus of the steel area of the wire is 4.5 x 10 ⁻⁷ m ² the strain in the wire calculated rent material is used for one of cross-sectional area and force of	ting a force d in the win l is 2.0 x 10 Calculate d in (i). the string: applied. Cal	¹¹ Pa and the cross-sectional the <i>FORCE</i> required to produce s in the piano. It has the same loulate the <i>EXTENSION</i> produced		 (b) The diagram above shows a second identical spring that has been put in parallel with the first spring. A force of 5.0 N is applied to this combination of springs. For this arrangement, calculate : (i) The EXTENSION of each spring. (ii) The ELASTIC POTENTIAL ENERGY stored in the springs. (c) The Young modulus of the wire used in the springs is 2.0 x 10¹¹ Pa. Each spring is made from a straight wire of length 0.40 m and cross-sectional area 2.0 x 10⁻⁷ m². Calculate the EXTENSION produced when a force of 5.0 N is applied to this straight wire.
(d) (i) Defi (ii) <i>Sta</i> t it is	stretched. Assume that when t rea remains constant.	the densit	y of the material of a wire when		(d) Describe and explain, <i>without further calculations</i> , the <i>difference in the elastic</i> <i>potential energies</i> in the straight wire and in the spring when a force of 5.0 N is applied to each. (OCR AS Physics - Module 2821 - June 2006) FXA © 200

UNIT 6481	Module 3	1.3.4 Springs & Materials			
	ords <i>ELASTIC, PLASTIC, BL</i> bservations tell you about the		D <i>UCTILE</i> to deduce what the escribed.	(b) Using the graph or otherwise, describe the <i>stress against strain behaviour</i> of the cast iron up top and including the point of fracture. (OCR AS Physics - Module 2821 - Jan 2006)	
	tap a <i>cast iron</i> bath gently wi ard, the bath shatters.	th a hammer,	the hammer bounces off. If you		
(b) <i>Alumini</i> high pre		orcing a shee	t of aluminium into a mould at		
	" <i>PUTTY</i> " can be stretched to and slowly. If it is pulled har		ts original length if it is pulled , it snaps.		
5	200		fracture point		
Stress/10 ⁶ Pa	120-				
		0.6 0.8 Strain/10 ⁻³	1.0 1.2 1.4		
	im above shows a stress again of cast iron.		oh up to the point of fracture		
	d of cast iron has a cross-sec [.] The <i>FORCE</i> applied to the roc				
(ii)	The YOUNG MODULUS of	cast iron.		FXA @ 2	008